

Micro-fabricated inductors on silicon for DC-DC converters operating at tens MHz

Ningning Wang, Terence O'Donnell, Ronan Meere, Cian O'Mathuna Microsystems, Tyndall National Institute, Cork, Ireland Contact: ning.wang@tyndall.ie | Tel: +353-21-4904418

Background

Context: Miniaturisation and integration of power supply for portable electronics

- Magnetic component is largest part of the power supply and is typically not integrated
- · Conventional magnetic components are difficult to miniaturise and integrate
- With technology developed in Tyndall magnetic components can be integrated on to Si
- · Lead the way towards "Power Supply on Chip"

Current trends of increased switching frequency in low power dc/dc

Modelling

- · Analytical model developed for micro-inductors:
 - o Winding ac and dc resistance
 - o Core eddy current loss
 - o Core hysteresis loss
- · Analytical model employed in device design and optimisation

Fabrication

- Integrated on Si using MEMs type fabrication techniques
- High Aspect Ratio Cu coils sandwiched between magnetic

• Extreme low profile (0.15mm) and high power density

Results

- Device size:
 - o 0.50 mm² (0402)
 - o 1.28 mm² (0603)
- o 2.50 mm² (0805)
- RDC: 0.08 0.79 Ohm.
- L: 20 200 nH
- Isat: up to 500mA

Measured inductance VS frequency

Inductance and resistance comparison between model and measurements

Measured inductance VS DC bias current

Converter Performance with Micro-inductors

Converter Specifications: $V_{in} = 3.0V$, $V_{out} = 1.5 V$, Frequency = 20 MHz

Inductance and resistance comparison between Tyndall inductor and Coilcraft inductor

Tyndall micro-inductor tested against commercial chip inductor alternatives in a dc/dc converter.

Inductor Performance Analysis

- · Peak Efficiency
 - o Converter peak efficiency: 80.3% using Coilcraft inductor and 74.5% using Tyndall inductor o Inductor peak efficiency: 93.8% for Coilcraft and 90.6 for Tyndall inductor
- · Losses of Coilcraft inductor calculated using provided S parameters
- · Losses of Tyndall inductor calculated using measured R and L
- Breakdown of losses in Tyndall inductor at I_{load}=0.12 A

Tyndall micro-inductor and coilcraft inductor loss analysis for 20MHz operating frequency

Breakdown of losses in Tyndall microinductor for 0.12 A dc current

Conclusions

- · Micro-inductors can be integrated on Si with low DC resistance and maintain inductance design values up to 20 MHz.
- An Analytical model for micro-inductors has been developed and has been validated using measurements
- Tyndall micro-inductor has been implemented in a high frequency dc/dc converter and performance is comparable to commercial chip inductors

