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�Miniaturization leading to increased 

consideration of integrated passives on-Si or 

in-package

�Soft ferromagnetic thin-films play a key part 

for inductance enhancement effects and low 

loss at high frequencies
� Inductance enhancements of up to 28i

� Current capacities of up to 10 Aii

�Ideal Magnetic thin-film will provide

� High inductance enhancement 

� High saturation current 

� Low losses at high frequency (>100 MHz)
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Devices to effectively close the core between the top and 

bottom magnetic layers are commonly used in 

transmission-line structures:

Magnetic sidewalls

Magnetic viasiii

Fabricated transmission-line microinductor

using uniaxial CoTaZr thin-film and 

magnetic vias

Cross-sectional view of a 

fabricated  transmission-line 

inductor with a NiFe thin-film

Comparison of analytic model with Finite-Element Analysis (FEA)
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FEA Model

Analytic Model

� Develop a method to study the effects of 

various thin-film materials on integrated, high-

frequency Transmission-line inductors

� Compare a set of measured ferromagnetic 

thin-films to determine the optimal parameters 

for operation in such an inductor

� Consider optimization for

� Maximum Inductance Enhancement

� Minimized Inductor Loss

� Maximum Current-carrying capacity

• Inductance model based on series of reluctance 

elements to calculate inductance enhancement

• Resistance model based on RDC+RWinding+RCore

• High-frequency complex permeability modelled using 

analytical equationsiv

• Simulations show a good correlation with Finite-Element 

Analysis (FEA)
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µ = relative permeability

µi = low-frequency permeability

δ = skin depth of thin-film

d = thin-film thickness

Three common materials for transmission-line 

micro-inductors were compared

Bs (T) Hk (A/m) Hc (Oe) µr0 ρ (µΩ·cm)

CoP 0.94 1100 < 0.1 660 101

NiFe 1.43 800 5 850 40

CoTaZr 1.52 1000 < 0.1 1000 99
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Hysteresis curves for three thin-film magnetic materials

• The device Q-factor illustrates the relationship 

between inductance and resistance at a 

particular frequency and geometry

• Device Q-factor peaks can be seen for each material, indicating an optimal 

material thickness for a particular frequency, not shown in thin-film measurement

• Inductance enhancement at the Q-factor peak can be used to determine the 

material with the greatest inductance enhancement capability at a given frequency

• High-Bias current handling of a device is a function of anisotropy field, however 

initial bias is influenced by more than low-frequency permeability

• Inductance enhancement as a function of frequency directly related to relative 

permeability and resistivity, CoP shows inductance retention to a high frequency
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Q = Q-Factor

ω = angular frequency

L = Inductance

R = Resistance 
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Q-factor and inductance peaks for a 5 x 10 µm conductor at 100 MHz
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Inductance enhancement as a function of frequency

Electroplated CoP shows promise for high-frequency transmission-line applications

Improved Resistivity (ρ) and Anisotropy field (Hk) could result in CoP performance greater 

than sputttered CoTaZr, with improved performance at high frequency and an increased 

deposition rate
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High-frequency complex permeability curves for selected 

magnetic materials and fit to theoretical model
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Inductance enhancement as a function of DC bias field
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Sputtered materials (CoTaZr)

- good magnetic properties

- time-consuming to produce above a few µm

Electrodeposited materials (CoP, NiFe) 

- Similar properties to sputtered materials 

- Improved deposition rate


