

High Frequency GaN-Based Power Conversion Stages

Dr. Michael A. Briere ACOO Enterprises LLC

Anatomy of a power device driven revolution in power electronics

ISR International Rectifier

- A Commercially Viable GaN-based power device platform
- The result of 5 years of R+D effort at IR
- Based on Proprietary GaN-on-Si Hetero-epitaxy
- Utilizes low cost high quality 150 mm Si wafer substrates
- Highest throughput (multi-wafer) epitaxial systems used
- Device manufacturing process is CMOS compatible
- Device structure and process leverages significant silicon expertise
- Standard high volume manufacturing disciplines applied
- Industry standard quality systems utilized
- Extensive intrinsic reliability studies performed
- Standard product reliability tests applied to device qualification

Heterogeneous Growth is actually on AIN layer, which is grown on substrate.

To be competitive, epitaxial process and substrate cost must be

< \$ 2 / cm²

High volume requires mature process platform

Current power device material demand > 10⁷ 6 inch wafers per year **MOCVD technology** is the most mature and scalable to volume production. All commercial electronics have so far been produced with MOCVD systems (especially LED).

Silicon substrates are the most scalable and cost effective for volume production

Adequate epitaxial film uniformity, defect levels, device reliability and process cost structure must be achieved to permit the use of GaN on Si based devices to achieve widespread use in power electronics.

Device processing should be CMOS compatible to achieve commercially viability.

Power Delivery

. en en ge

-

Value = efficiency *density/cost

The value proposition is driven to a large measure by the performance of the power device.

Conversion architecture and control schemes are developed to take advantage of the capabilities of the power devices and mitigate their deficiencies.

Radically improved device performance therefore drives a revolution in power electronics in terms of both architectures and control schemes

Comparison of R_{on} for Si, SiC, and GaN

Ecrit : Si = 20 V/ μ m , GaN = 300 V/ μ m

IGR International Rectifier

Low Frequency Leads to Parasitic Power Loss

ISR International Rectifier

-

The Power Stage Function becomes part of the CPU Socket!

Loop 1 di/dt ≈ 6600A/us Control Loop & Output Inductance

Can Achieve > 91 % efficiency from 10A to 100 A – 4 phase

IGR International Rectifier

13

Enabling High Density LV Point of Load Converters

12V to 2V, 10A Load, Power Conversion Loss

Freq (MHz)

Application: POL- Early Prototypes realize potential of GaN

iP2007 Switching Waveforms at 4 MHz Vin = 12 V, Vout = 1.3 V, lout = 20 A

iP2007 Vsw at 4MHz

IGR International Rectifier

TOR International Rectifier

Comparison of IR prototype GaN HV diode function Qrr and SiC

ICR International Rectifier

IGR International Rectifier

ICR International Rectifier

IQR

ICR International Rectifier

Potential LV DC-DC Power Stage Roadmap

Optimized Performance – Without tradeoff

12Vin, 1.2Vout, 100A

Based on Circuit Simulation

ISR International Rectifier

A Challenge for Magnetic Element Research for 2013

Density :

Freq : 10 to 100 MHz (L> 20 to 2 nH)

 $J > 5 A/mm^2$

Efficiency

 $Rs < 5 mohmmm^2$

ICR International Rectifier

Achieving significantly improved density at high efficiency and commercially viable costs requires increased switching frequecy and a higher degree of integration of the power conversion stage.

Silicon based power devices are reaching their inherent performance limitations.

New power devices based on new materials such as SiC and GaN are clearly leading candidates to achieve breakthrough performance gains

Since solution costs are fundamental to adoption, it appears that SiC will have only a marginal role to play in the larger volume of power device materials requirements (< 10 ⁶ out of > 10 ⁹ cm⁻²)

GaN based devices (HEMT) on silicon substrates look like a promising candidate to meet this opportunity.

High density magnetic components, capable of supporting high currents with low loss are required for conversion switching frequencies > 10 MHz

Thank You for Your Kind Attention