Design Considerations for Integrated Powertrains

Dr P. Rutter
Development Manager, Advanced Devices Group,
Power Management, NXP Semiconductors
PwrSoc 2008
Contents

- Introduction to Integrated Powertrains
- MOSFET & Technology Evolution
- Technology Choices
- Power Loss Analysis
- Design Choices
- Future Improvements
- Conclusion
What Is an Integrated Powertrain (DrMOS)?

Focus: 12V Conversion, 20-40A/phase
Evolution of Integrated Powertrains

- Commercial Products emerged in ≈2001
 - Discrete MCM vs. BGA vs. Single chip (e.g. Volterra VT1101)
 - Different approaches by NXP, Int. Rectifier, On Semi, Intersil

- MCM Approach adopted by Intel for DrMOS spec ≈2002-2004
 - Approach adopted by many manufacturers (NXP, Renesas, Fairchild, etc)

A Decade of Power MOSFET Improvement

In SO8 footprint ≈90% Reduction in Rds(on) & Rds(on)*Qgd

|------|------|------|------|------|------|

PHN1013 (30V Vds)
- Qgd =10nC, Qgtot =29nC
- Rds(on)\text{typ} =10\text{mΩ} (Vgs=10V)

PHSMN1R7-30YL (30V Vds)
- Qgd =8.7nC, Qgtot =36nC
- Rds(on)\text{typ} =1.2\text{mΩ} (Vgs=10V)
Technology Choice: Lateral vs. Vertical

- Monolithic laterals use 3x mask count for discrete MOSFET
 - Only if Power<Logic is it cost effective
 - Laterals tend to need higher BV margin due to SOA
 - Reverse Recovery of Laterals is poor

- Rds(on) of laterals is close to theoretical limit (BV requires ≈20V/μm drift length), changes in technology node down to 65nm do not give significant improvement
 - Vertical devices still offer promise of significant improvement (≈factor 2) in Rds(on) and switching FOMs
Technology Choice: Lateral vs. Vertical

- If conversion voltage is reduced to facilitate higher voltage switching then cross-over of lateral vs. vertical is around 5V

- For 3V conversion lateral is best choice due to ease of integration of driver & PWM in single die

[4] Pendhakor, ISPSD04
[5] Park, ISPSD08
[6] Riccardi, ISPSD07
[7] Peake, ISPSD08
[8] Goarin, ISPSD07
[9] Heringa, ISPSD08
Lateral vs. Vertical: Product Comparison

- Latest Vertical trench devices are catching up with Lateral devices FOM
 - No verified data for latest Ciclon technology but looks like 25V 4.5mΩ device has Rds(on)*Qgd of 11.25mΩnC and Rds(on)*Qgtot of 40.5mΩnC at Vds of 12V. Expected performance of next generation trench at 30V.

- For same die area Rds(on) of vertical is $<\frac{1}{2}$ of lateral
 - Significant cost advantage for vertical (even discounting higher mask count)

<table>
<thead>
<tr>
<th></th>
<th>Lateral</th>
<th>Vertical Trench</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Same Rds(on)</td>
<td>Same Die Size</td>
</tr>
<tr>
<td>BVdss</td>
<td>30V</td>
<td>30V</td>
</tr>
<tr>
<td>Typ. Rdson @4.5V</td>
<td>5mΩ</td>
<td>5mΩ</td>
</tr>
<tr>
<td>Qgtot (@Vgs=4.5V)</td>
<td>14nC</td>
<td>14.1nC</td>
</tr>
<tr>
<td>Product Rds(on)*Qgd</td>
<td>20mΩnC</td>
<td>22mΩnC</td>
</tr>
<tr>
<td>Product Rds(on)*Qgtot</td>
<td>70mΩnC</td>
<td>70.5mΩnC</td>
</tr>
</tbody>
</table>

Note: Difference in FOMs for Vertical devices due to slightly different package resistance

$[10]$ Values taken from product datasheets, except Qgd
$[12]$ Lab measurements with conditions as in [11]
Power Loss Analysis (LFPak (Power SO8) not Int. Powertrain)

- PSpice unsuitable for loss analysis due to poor silicon models
- FEA unsuitable due to lack of PCB parasitics & accurate drive circuit (& very very slow)

SOLUTION: Build accurate PSpice model!
- Complex behavioural model ensures accuracy of MOSFET capacitance & reverse recovery

Power Loss Breakdown (500KHz, 20A)

Mathcad used to analyse PSpice waveforms & produce loss breakdown

Control FET Power Loss (1MHz)

- At high currents almost half of the Control FET power loss is independent of the actual Control FET silicon!

![Chart showing power loss components](chart.png)

- Caused by the Reverse Recovery of Sync FET
- Related to the Control FET silicon (Qgd, Rds(on), Qgtot)
- Determined by parasitic inductance: PCB & Package

No.1. Cause of Power Loss

freq=1MHz, Vin=12V, Vout=1.3V
Sync FET Power Loss (1MHz)

- Sync FET Rds(on) is now so low (e.g. 1.2mΩ for PHSMN1R7-30YL) that other loss mechanisms are just as important

![Loss Chart]

- Reverse Recovery Losses in Sync FET are negligible - they occur in Control FET
- Related to the Sync FET silicon (Qgtot) and on gate drive voltage
- Determined largely by deadtime control of driver IC
- Related to the Sync FET silicon (Rds(on))

freq=1MHz, Vin=12V, Vout=1.3V
Power Loss Analysis Conclusions

- Improvements in Power MOSFET technology over the last ten years mean that:
 - Q_{gd} is no longer the dominant cause of power loss for Control FET
 - $R_{ds(on)}$ no longer dominates power loss in the Sync FET

- Improvements in efficiency require all sources of power loss are improved
 - This is the driving force behind the development of integrated powertrains.
Design Choices: Die Size

- Die Size Choice is a compromise
 - Cost / Performance
 - Low Load vs. High Load efficiency
 - Varying Customer Requirements
 - Iout, Freq, etc.

- High Load vs. Low Load
 - LFPak (using online SIMport[^14])
 - FETs chosen for lowest loss at 30A & 20A, 500KHz are compared

- Optimising FETs at full load is expensive and wasteful
 - Only if thermals are limiting factor

[^15]: SIMport is a complex formula MOSFET selection tool, that also allows efficiency comparisons over the whole current range to be performed. Typically optimising FETs at 2/3 maximum current tends to give good low and high load optimisation, http://www.nxp.com/models
Design Choices: Gate Drive Voltage

- 5V drive for Sync FET is optimum
 - Especially @ 1MHz
 - Not always available e.g. modules

- Include LDO to reduce gate drive losses where 5V not available
 - Optimum gate drive is load and frequency dependent
 - In PIP212 6.5V chosen
Further Efficiency Improvements

- Physical closeness of MOSFET & Driver allows for additional efficiency and system enhancing features
 - Adding intelligence in the way power switches are used is key benefit of integration (often neglected as di/dt increase is usual focus)

- **Example**: Automatic Deadtime Reduction
 - Driver can directly sense the Sync FET die and reduce internal timing on cycle by cycle basis until no diode conduction occurs
 - Clean sense signal as source inductance spikes not measured

![Diagram](image-url)
Automatic Deadtime Reduction - Concept

Traditional solution with 30ns deadtime (diode conduction)
Automatic Deadtime Reduction - Concept

Sync FET losses slowly reduce as deadtime narrows

Note: Deadtime scheme can (is) be done discretely but package source inductances prevents optimum deadtime being achieved
Automatic Deadtime Reduction - Concept

Positive Sync FET Vgs during deadtime reduces reverse recovery current and voltage overshoot.
At 4ns deadtime reverse recovery eliminated
⇒ Subthreshold current effect in ultra high density TrenchMOS

Automatic Deadtime Reduction - Concept

Ideal situation, no diode current
⇒ but just 10mW improvement over 4nS deadtime
Deadtime Reduction - Implemented

No Automatic Deadtime Reduction

2) Switch Node 2 V 10 nS
3) Control FET VGS 2 V 10 nS
4) Sync FET VGS 2 V 10 nS

Automatic Deadtime Reduction Enabled

5) Switch Node 2 V 10 nS
6) Sync FET VGS 2 V 10 nS
7) Control FET VGS 2 V 10 nS

Overshoot Reduced

Deadtime Reduced

NXP
Performance Improvement

- Benefits of Integrated Powertrain approach is to produce approximately a doubling of switching frequency for same silicon technology
 - Or approx \(\approx 3\% \) efficiency increase

- **\(\text{di/dt} \)**
 - \(\text{di/dt} = 7\text{A/ns} \)
 - 7x faster \(\text{di/dt} \) than DPak
 - 2x faster than \(\text{di/dt} \) LFPak (Power SO8)

- **Deadtime**
 - Steady State deadtime only 5ns
 - Diode Losses (deadtime & reverse recovery significantly reduced)
Advanced Powertrain Packaging

- As die sizes shrink HVQFN is poor choice
 - Die:Footprint ratio becomes inefficient
 - Isolation gaps, space for pins etc
 - Embedded technology has potential for creating very low inductance integrated powertrains

[17] Development of Flex-based Embedded Actives Packages, Ronnie Chin, Tien Siang Chia, Kebao Wan, Thai Houng Tiong & Wil Peels, ECWC11
Conclusion

- Over the last 10 years Power MOSFET technology has improved tremendously (≈90% in $R_{ds(on)}$ and $R_{ds(on)}*Q_{gd}$)

- For 12V Conversion Vertical MOSFETs are optimum technology choice
 - If conversion voltage <5V then Lateral structures become viable, especially for output currents <10A

- Placing Driver and MOSFETs physically close in a single package offers significant performance advantages
 - Faster switching of the current (di/dt increased by a factor of 2)
 - Small overall footprint (half footprint of discrete alternative)
 - Ability to introduce power saving functionality (e.g. automatic deadtime reduction)

- Future Powertrain development aims at reducing total loop inductance
 - Additional efficiency enhancing and ease of use features
Thank-you

phil.rutter@nxp.com