

Design Considerations for Integrated Powertrains

Dr P.Rutter Development Manager, Advanced Devices Group, Power Management, NXP Semiconductors PwrSoc 2008

Contents

- Introduction to Integrated Powertrains
- MOSFET & Technology Evolution
- Technology Choices
- Power Loss Analysis
- Design Choices
- Future Improvements
- Conclusion

What Is an Integrated Powertrain (DrMOS)?

Focus: 12V Conversion, 20-40A/phase

Evolution of Integrated Powertrains

- ▶ Commercial Products emerged in ≈2001
 - Discrete MCM vs. BGA vs. Single chip (e.g. Volterra VT1101)
 - Different approaches by NXP, Int. Rectifier, On Semi, Intersil
- ▶ MCM Approach adopted by Intel for DrMOS spec ≈2002-2004^[3]
 - Approach adopted by many manufacturers (NXP, Renesas, Fairchild, etc)

[1] SAPFET-2: A Power Module For Power Converters, L.A. de Groot, PCIM 2000
[2] Challenges of Integrated Power Trains, P. Rutter, Intel Technology Symposium 2004
[3] DrMOS Rev 1.0 Nov 2004, http://www.intel.com/design/pentium4/papers/DrMOS.htm

A Decade of Power MOSFET Improvement

In SO8 footprint ≈90% Reduction in Rds(on) & Rds(on)*Qgd

PHN1013 (30V Vds) Qgd =10nC, Qgtot =29nC Rds(on)_{typ} =10mΩ (Vgs=10V)

PHSMN1R7-30YL (30V Vds) Qgd =8.7nC, Qgtot =36nC Rds(on)_{tvp} =1.2mΩ (Vgs=10V)

Technology Choice: Lateral vs. Vertical

- Monolithic laterals use 3x mask count for discrete MOSFET
 - Only if Power<Logic is it cost effective
 - Laterals tend to need higher
 BV margin due to SOA
 - Reverse Recovery of Laterals is poor
- Rds(on) of laterals is close theoretical limit (BV requires ≈20V/µm drift length), changes in technology node down to 65nm do not give significant improvement
 - Vertical devices still offer promise of significant improvement (≈factor 2) in Rds(on) and switching FOMs

[4] Pendhakor, ISPSD04[5] Par[7] Peake,ISPSD08[8] Goa

[5] Park, ISPSD08 [8] Goarin,ISPSD07 [6] Riccardi, ISPSD07[9] Heringa, ISPSD08

Technology Choice: Lateral vs. Vertical

100 If conversion voltage is reduced to facilitate higher → Dongbu8 (0.18um) [5] voltage switching then ---NXP - Trench [7] Sp.Rds(on) (mOhm mm²) NXP - Trench Research [8] cross-over of lateral vs. • NXP - Lateral Research (65nm) [9] vertical is around 5V 10 For 3V conversion lateral is best choice due to ease of integration of driver & PWM in single die Substrate registance (incl. Out diffusion) for vertical devices 10 20 30 0 40 BVdss (V) **12V Rated suitable 30V Rated suitable** 7V Rated suitable for 5V Conversion for 12V Conversion for 3V Conversion

[4] Pendhakor, ISPSD04 [7] Peake, ISPSD08

[5] Park, ISPSD08 [8] Goarin, ISPSD07 [6] Riccardi, ISPSD07 [9] Heringa, ISPSD08 50

Lateral vs. Vertical: Product Comparison

Latest Vertical trench devices are catching up with Lateral devices FOM

- No verified data for latest Ciclon technology but looks like 25V 4.5m Ω device has Rds(on)*Qgd of 11.25m Ω nC and Rds(on)*Qgtot of 40.5mΩnC at Vds of 12V. Expected performance of next generation trench at 30V.

▶ For same die area Rds(on) of vertical is <¹/₂ of lateral

- Significant cost advantage for vertical (even discounting higher mask count)

	Lateral	Vertical Trench	
		Same Rds(on)	Same Die Size
	GWS12N30 ^[10]	PSMN5R0-30YL ^[10]	PSMN2R0-30YL ^[10]
BVdss	30V	30V	30V
Typ. Rdson @4.5V	$5 \mathrm{m} \Omega$	$5 \mathrm{m} \Omega$	2.15mΩ
Qgd (@Vds=15V)	4nC ^[11]	4.4nC ^[12]	8.7nC ^[12]
Qgtot (@Vgs=4.5V)	14nC	14.1nC	30nC
Product Rds(on)* Qgd	20mΩnC	22mΩnC	18.7mΩnC
Product Rds(on)*Qgtot	70mΩnC	70.5mΩnC	64.5mΩnC

Note: Difference in FOMs for Vertical devices due to slightly different package resistance

[10] Values taken from product datasheets, except Qgd [11] Value taken from: Comparative Study of Lateral and Trench Power MOSFETs in Multi-MHz Buck Converter Applications, Yali Xiong et. al, PESC07 [12] Lab measurements with conditions as in [11]

Power Loss Analysis (LFPak (Power SO8) not Int. Powertrain)

- PSpice unsuitable for loss analysis due to poor silicon models
- FEA unsuitable due to lack of PCB parasitics & accurate drive circuit (& very very slow)
- SOLUTION: Build accurate PSpice model!
 - Complex behavioural model ensures accuracy of MOSFET capacitance & reverse recovery

[13] Accurate behavioural modelling of power MOSFETs based on device measurements and FEsimulations, Elferich, R.; Lopez, T.; Koper, N., EPE 2005

Power Loss Breakdown (500KHz, 20A)

Mathcad used to analyse PSpice waveforms & produce loss breakdown

Control FET Power Loss (1MHz)

At high currents almost half of the Control FET power loss is independent of the actual Control FET silicon !

Sync FET Power Loss (1MHz)

 Sync FET Rds(on) is now so low (e.g. 1.2mΩ for PHSMN1R7-30YL) that other loss mechanisms are just as important

Power Loss Analysis Conclusions

- Improvements in Power MOSFET technology over the last ten years mean that:
 - Qgd is no longer the dominant cause of power loss for Control FET
 - Rds(on) no longer dominates power loss in the Sync FET
- Improvements in efficiency require all sources of power loss are improved
 - This is the driving force behind the development of integrated powertrains.

Design Choices: Die Size

- Die Size Choice is a compromise
 - Cost / Performance
 - Low Load vs. High Load efficiency
 - Varying Customer Requirements
 - lout, Freq, etc.

- High Load vs. Low Load
 - LFPak (using online SIMport^[14])
 - FETs chosen for lowest loss at 30A & 20A, 500KHz are compared
- Optimising FETs at full load is expensive and wasteful
 - Only if thermals are limiting factor

[15] SIMport is a complex formula MOSFET selection tool, that also allows efficiency comparisons over the whole current range to be performed. Typically optimising FETs at 2/3 maximum current tends to give good low and high load optimisation, <u>http://www.nxp.com/models</u>

Design Choices: Gate Drive Voltage

- Include LDO to reduce gate drive losses where 5V not available
 - Optimum gate drive is load and frequency dependent
 - In PIP212 6.5V chosen

- 5V drive for Sync FET is optimum
 - Especially @ 1MHz
 - Not always available e.g. modules

Further Efficiency Improvements

- Physical closeness of MOSFET & Driver allows for additional efficiency and system enhancing features
 - Adding intelligence in the way power switches are used is key benefit of integration (often neglected as di/dt increase is usual focus)
- Example: Automatic Deadtime Reduction
 - Driver can directly sense the Sync FET die and reduce internal timing on cycle by cycle basis until no diode conduction occurs
 - Clean sense signal as source inductance spikes not measured

Traditional solution with 30ns deadtime (diode conduction)

Sync FET losses slowly reduce as deadtime narrows

Note: Deadtime scheme can (is) be done discretely but package source inductances prevents optimum deadtime being achieved

Positive Sync FET Vgs during deadtime reduces reverse recovery current and voltage overshoot

[16] Reverse Recovery in High Density Trench MOSFETs with Regard to the Body-Effect, Toni López, Reinhold Elferich & Nick Koper

Ideal situation, no diode current

 \Rightarrow but just 10mW improvement over 4nS deadtime

Deadtime Reduction - Implemented

Performance Improvement

Advanced Powertrain Packaging

- As die sizes shrink HVQFN is poor choice
 - Die:Footprint ratio becomes inefficient
 - Isolation gaps, space for pins etc
 - Embedded technology has potential for creating very low inductance integrated powertrains

[17] Development of Flex-based Embedded Actives Packages, Ronnie Chin, Tien Siang Chia, Kebao Wan, Thai Houng Tiong & Wil Peels, ECWC11
 [18] Embedded Die Technology, Next Generation Packaging for Discrete Semiconductors, Wil Peels, ²⁴ David Heyes, Martien Kengen, Semicon Europa 2008

Conclusion

- Over the last 10 years Power MOSFET technology has improved tremendously (~90% in Rds(on) and Rds(on)*Qgd)
- For 12V Conversion Vertical MOSFETs are optimum technology choice
 - If conversion voltage <5V then Lateral structures become viable, especially for output currents <10A
- Placing Driver and MOSFETs physically close in a single package offers significant performance advantages
 - Faster switching of the current (di/dt increased by a factor of 2)
 - Small overall footprint (half footprint of discrete alternative)
 - Ability to introduce power saving functionality (e.g. automatic deadtime reduction)
- Future Powertrain development aims at reducing total loop inductance
 - Additional efficiency enhancing and ease of use features

Thank-you phil.rutter@nxp.com