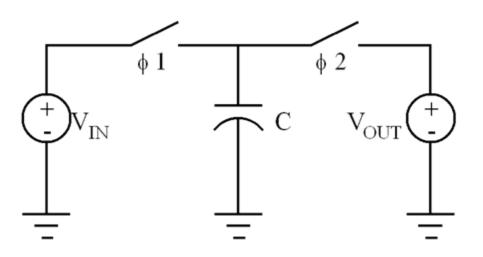
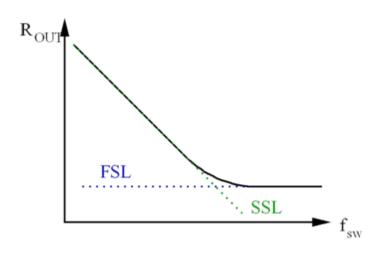

What About Switched Capacitor Converters?

Grad Students: Michael Seeman, Vincent Ng, and Hanh-Phuc Le
Profs. Seth Sanders and Elad Alon
EECS Department, UC Berkeley

Switched Capacitor Power Converters

- Only switches and capacitors
- Simple low freq model as an ideal transformer $_{v_{\rm IN}}$ with Thevenin impedance
 - neglects freq dependent loss and leakage
 - Would model leakage, dynamic losses with shunt imped.
- Using no inductors has advantages:
 - Simplified full integration potential
 - Works well over a wide power range
 - Single mode, can adjust clock rate
 - No minimum load
 - No inductive switching losses
- Open-loop loadline regulation:
 - Output impedance has R-C characteristic, with R naturally designed to meet efficiency spec





Why Not S-C?

- Difficult regulation?
- Not suited for high current/power?
- Lots of difficult gate drive details?
- Interconnect difficulty for many caps?
- Voltage rating of CMOS processes?
- Magnetic-based ckts = higher performance?

SC Analysis: Simplest Example

- Slow Switching Limit (SSL):
 - Impulsive currents (charge transfers)
 - Resistance negligible (assume R = 0)
 - This (SSL) impedance is the switching loss!
- Fast Switching Limit (FSL):
 - Constant current through switches
 - Model capacitors as voltage sources (C → ∞)

$$i = f_{sw} \Delta q = f_{sw} C \Delta v$$

$$i = \frac{1}{4} \frac{1}{R} \Delta v$$

$$(\Delta v = V_{IN} - V_{OUT})$$

Comparing Converters

Need a metric to compare converters of different types!

Example: How much power can we get out of a converter with 10% voltage drop?

$$P_{OUT} = I_{OUT}V_{OUT} = (0.1G_{OUT}V_{OUT})V_{OUT} = 0.1(G_{OUT}V_{OUT}^2)$$

Power performance related to GV²

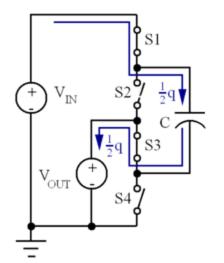
We can make a unitless performance metric by comparing converter GV² to component GV²

SSL Metric:

$$\frac{G_{OUT}V_{OUT}^2}{f\sum_{caps}C_iv_{c,i(rated)}^2}$$

FSL Metric:

$$rac{G_{OUT}V_{OUT}^2}{\sum_{switches}G_iv_{r,i(rated)}^2}$$

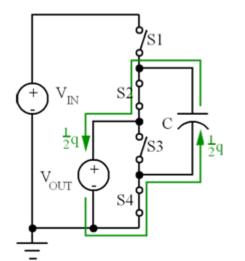

Analysis via Charge Multipliers

Capacitor Charge Multiplier:

 $a_{c,i}^{j} = \frac{\text{charge flow in cap } i, \text{ phase } j}{\text{output charge flow, both phases}}$

Switch Charge Multiplier:

 $a_{r,i} = \frac{\text{charge flow in switch } i, \text{ when on}}{\text{output charge flow, both phases}}$



Phase 1:

$$a_c^1 = \frac{1}{2}$$

$$a_{r,1} = \frac{1}{2}$$

$$a_{r,3} = -\frac{1}{2}$$

Phase 2:

$$a_c^2 = -\frac{1}{2}$$

$$a_{r,2} = \frac{1}{2}$$

$$a_{r,4} = -\frac{1}{2}$$

Output Impedance ~ Power Loss

M. Seeman, S. Sanders, IEEE T-PELS, March 2008

 An SC converter's power loss is the sum of component energy (power) losses:

$$P_{SSL} = f_{sw} \sum_{capacitors} \Delta q_i \Delta v_i = R_{SSL} i_{OUT}^2 \qquad P_{FSL} = \frac{1}{2} \sum_{switches} R_i (2q_i f_{sw})^2$$

 The converter's output impedance can be determined in terms of just the charge multiplier components:

$$R_{SSL} = \sum_{capacitors} \frac{(a_{c,i})^2}{C_i f_{sw}} \qquad R_{FSL} = 2 \sum_{switches} R_i (a_{r,i})^2$$

Output Impedance and Optimization

Tellegen's theorem and energy conservation used to find R_{OUT} :

SSL:
$$R_{OUT} = \frac{1}{f_{sw}} \sum_{i \in capacitors} \frac{(a_{c,i}^1)^2}{C_i}$$
 FSL: $R_{OUT} = 2 \sum_{i \in switches} R_i (a_{r,i})^2$

Minimize output impedance while keeping component cost constant:

Cost constraint

Optimized components

Optimized output impedance

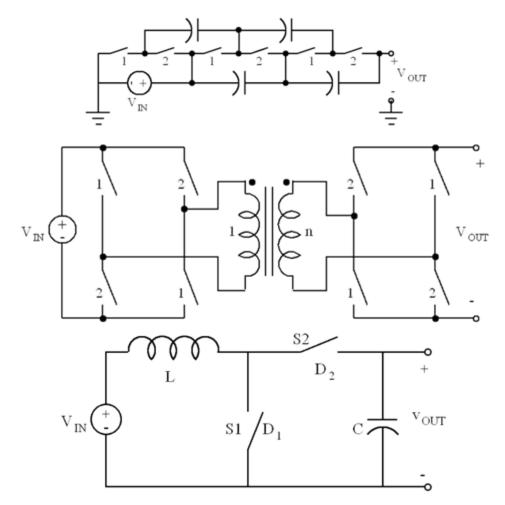
$$E_{TOT} = \frac{1}{2} \sum_{capacitors} C_i v_{c,i(rated)}^2 \qquad \Longrightarrow \qquad C_i^* \propto \left| \frac{a_{c,i}}{v_{c,i(rated)}} \right| \qquad R_{SSL}^* = \frac{1}{2E_{TOT} f_{sw}} \left(\sum_{capacitors} \left| a_{c,i} v_{c,i(rated)} \right| \right)^2$$

$$R_{SSL}^* = \frac{1}{2E_{TOT}f_{sw}} \left(\sum_{capacitors} \left| a_{c,i} v_{c,i(rated)} \right| \right)^2$$

$$A_{TOT} = \sum_{switches} G_i v_{r,i(rated)}^2 \qquad \Longrightarrow \qquad G_i^* \propto \left| \frac{a_{r,i}}{v_{r,i(rated)}} \right| \qquad R_{FSL}^* = \frac{2}{A_{TOT}} \left(\sum_{switches} \left| a_{r,i} v_{r,i(rated)} \right| \right)^2$$

$$R_{FSL}^* = \frac{2}{A_{TOT}} \left(\sum_{switches} \left| a_{r,i} v_{r,i(rated)} \right| \right)^2$$

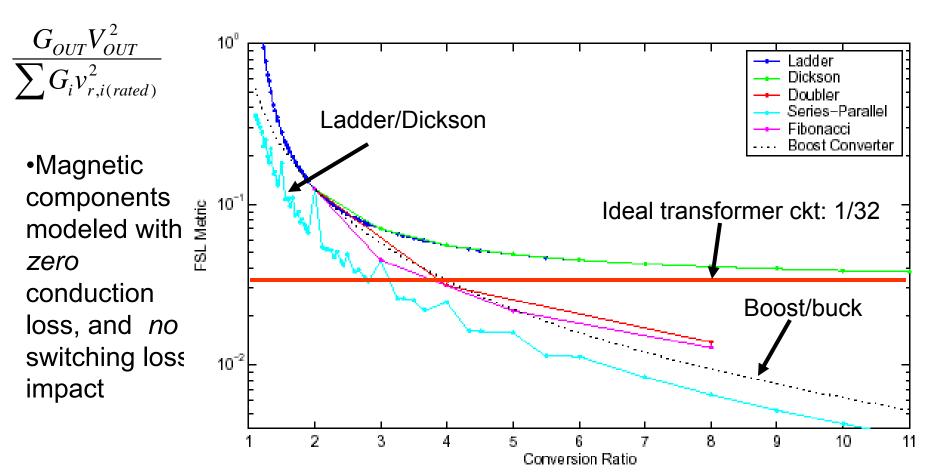
In the optimal case:


Capacitor voltage ripple and switch voltage drop are proportional to rated voltage Output impedance proportional to the square of the sum of the component V-A products

Comparison with Magnetic Designs

Ladder-type switchedcap converter

Transformer-bridge converter


Boost or Buck converter

Switch sizes optimized for a given conversion ratio *n* for all converters

Switch Utilization - Conduction Loss Comparison

 Performance compared with switch GV2 metric:

D.H. Wolaver, PhD dissertation, MIT, 1969 proves fundamental thms on dc-dc conv.:

G = voltage or current gain

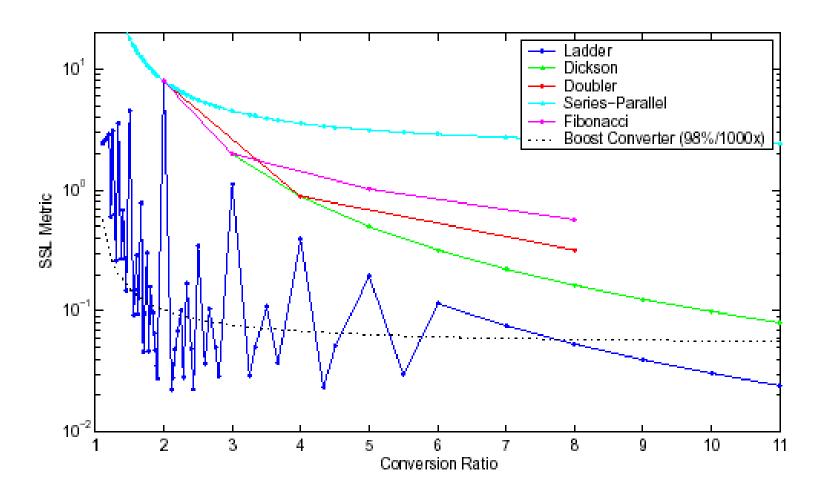
• Switches (resistors):

$$-\sum_{k \in dc-active}^{-\frac{1}{V_k}} \bar{i}_k \ge \frac{G-1}{G} P_O$$

$$-\sum_{k \in ac-active} \overline{(v_k - v_k)} \bullet \overline{(i_k - i_k)} \ge \frac{G - 1}{G} P_O$$

Ladder/Dickson are optimal

Reactive Elements:

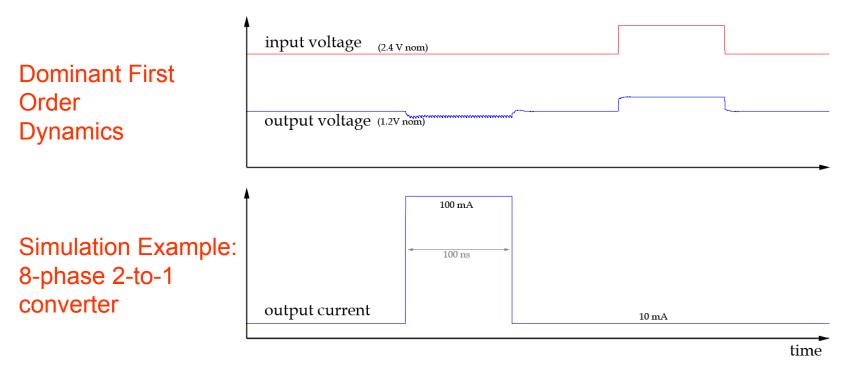

$$\frac{1}{2} \sum_{k \in reactive} \left| \overline{v_k i_k} \right| \ge \frac{G - 1}{G} P_O$$

Meaning for 2-phase ckts:

$$\sum_{k \in C} V_k q_k + \sum_{k \in L} I_k \lambda_k \ge \frac{1}{f} \frac{G - 1}{G} P_O$$

Utilization of Reactive Elements:

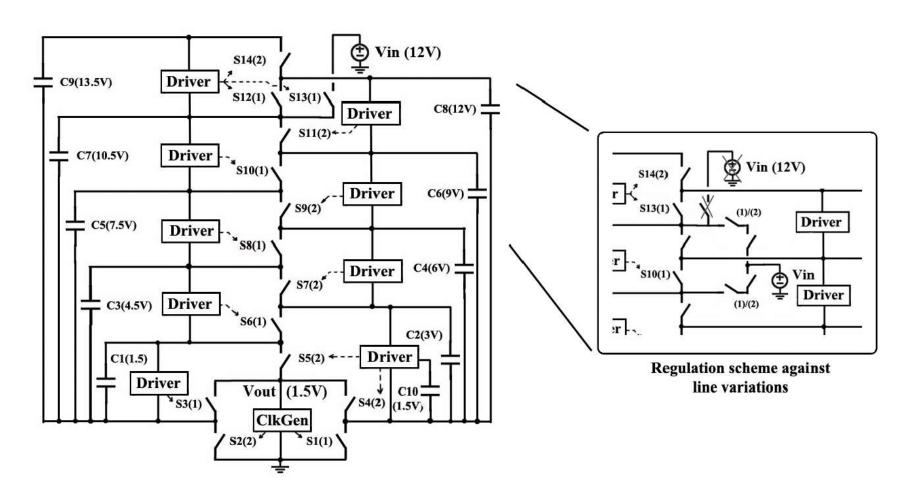
•For boost or buck, derate inductor by 1000x relative to cap due to practical energy density, assert that S-C examples exhibit 2% voltage drop relative to mag ckts



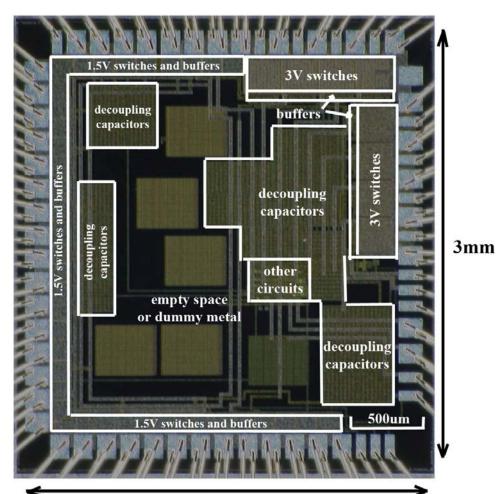
The Submicron Opportunity

- Rate device by ratio: $G_s V_s^2 / C V_g^2$
 - Essentially an Ft type parameter for a power switch reflecting power gain, exposes opportunity in scaling
- Suggests that we should look for opportunities to build our ckts with scaled CMOS based devices, but:
 - Low voltage rating per device
 - Inadequate metal/interconnect for high current?

Regulation Considerations


- Open-Loop Loadline Regulation
 - Droop matching resistive output impedance effective for loadline VR type reg.

- Tap Changing for Line Regulation Feedforward
- Multi-mode Operation for Apps like Voltage Scaling


Example 1 – Point-of-Load:12V-to-1.5V Dickson Circuit

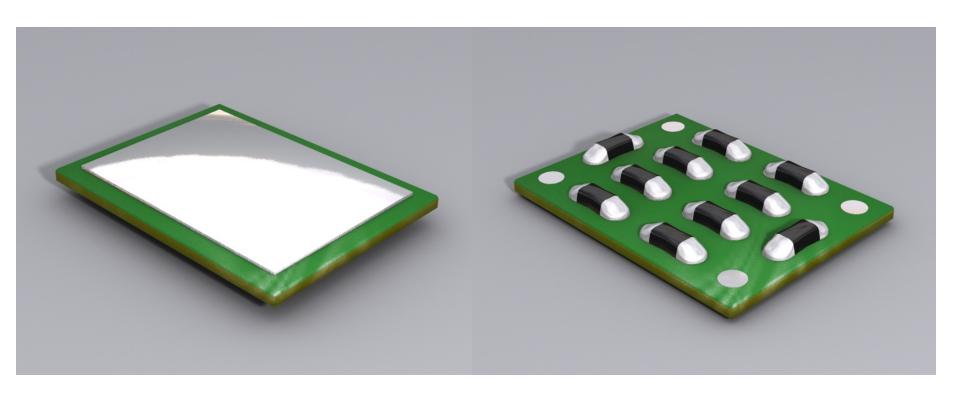
Illustrates "tap-changing" technique for line regulation.

V.W. Ng, A 98% peak efficiency 1.5A 12V-to-1.5V Switched Capacitor dc-dc converter in 0.18 um CMOS technology, Master Thesis Report, EECS Dept, UC Berkeley, Dec. 2007.

Layout in Triple-Well 0.18 um CMOS

AREA OF DIFFERENT COMPONENTS IN DIE LAYOUT

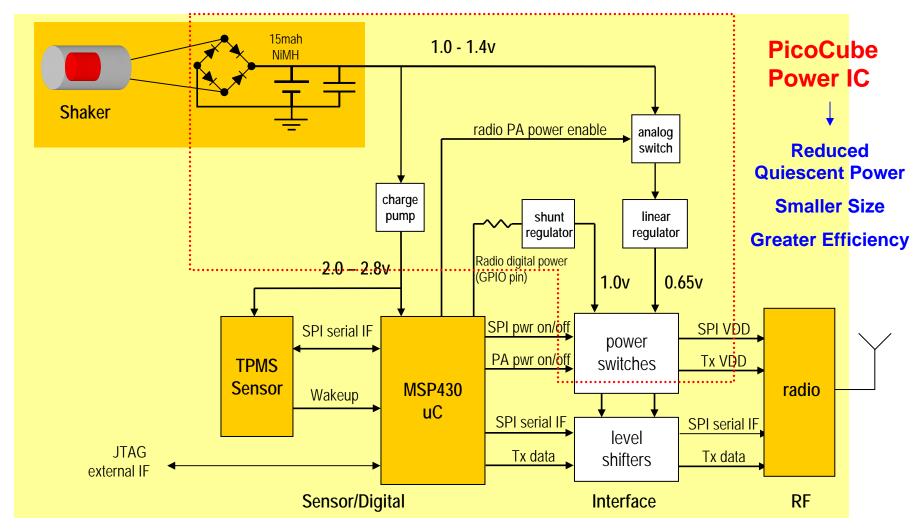
	area in layout			
3V switches	$0.57mm^{2}$			
3V switch buffers	$0.1mm^{2}$			
1.5V switches	$0.5mm^{2}$			
1.5V switch buffers	$0.06mm^{2}$			
Other circuits	$0.13mm^{2}$			
decoupling capacitors	$1.56mm^{2}$			
Total active area	$3\mathrm{mm}^2$			
Total area excluding pads	$6.7mm^{2}$			
Total area including pads	$9\mathrm{mm}^2$			


3_{mm}

Design vs. Performance

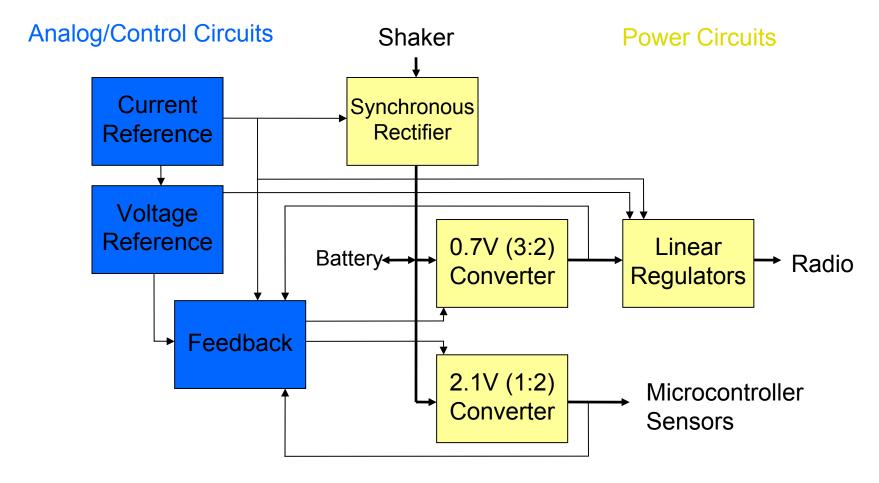
1.5V cap	$2.2\mu F$			
3V cap	$2.2\mu F$			
4.5V cap	$1\mu F$			
6V cap	$1\mu F$			
7.5V cap	$0.68 \mu F$ $0.68 \mu F$			
9V cap				
10.5V cap	$0.47 \mu F$			
3V switch width	16mm			
1.5V switch width	75mm			
Contribution to condu	iction loss			
all switches	$51m\Omega$			
onchip metal	$39m\Omega$			
capacitor R_{ESR}	$15m\Omega$			
bondwire resistance	$65m\Omega$			
Fixed loss	1.3mW			
Freq-dep switch loss	7mW			
R _{OUT} @1MHz	$211 \mathrm{m}\Omega$			

POL Design 2: Flip Chip Packaging Scheme



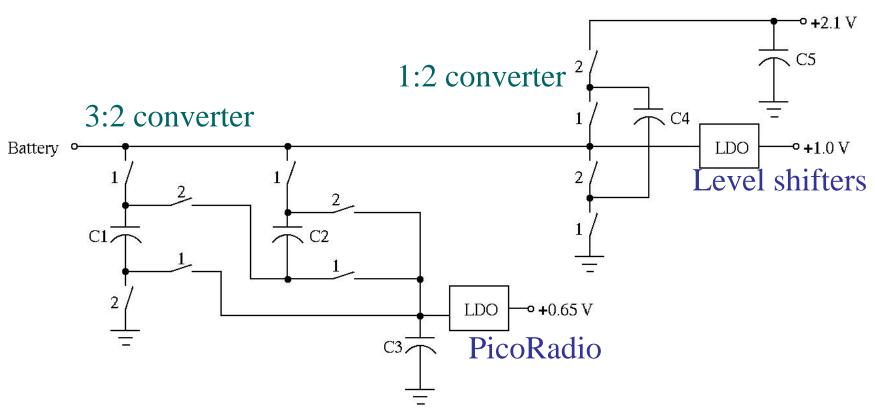
Cost and PCB Area Comparison

COMPARISON WITH OTHER WORKS IN INDUSTRY AND LITERATURE


	input	output	peak eff	> 80% eff	switch area	dominant passive	PCB area	height	L,C cost
1-st design (this work)	12V	1.5V	93% at 200mA	25mA-1A	$1mm^2$	$\sim 1 \mu F$ caps x10	$13mm^2$	0.8mm	\$0.11
2-nd design (this work)	12V	1.5V	95% at 1 A	100mA-5A	$4mm^2$	$\sim 3\mu F$ caps x 8	$11mm^2$	0.8mm	\$0.09
SC converter (TI, [6])	5V	1.5V	85%	2mA-200mA		\sim 1 μ F caps x 2	$3mm^2$	0.8mm	\$0.02
buck (National, [7])	12V	0.8V	75%	-		$10\mu\mathrm{H}$ inductor	$34mm^2$	2.8mm	\$0.47
buck (Linear, [9])	12V	3.3V	85%	0.1A-2A		$4.7\mu\mathrm{H}$ inductor	$36mm^2$	2mm	\$0.17
buck (Maxim, [8])	12V	3.3V	86%	3mA-1.5A		$10\mu\mathrm{H}$ inductor	$34mm^2$	2.8mm	\$0.47
buck (Literature, [5])	12V	1.3V	89%	1A-10A	$15mm^2$	$2\mu H$ inductor	$156mm^2$	6.5mm	\$0.76

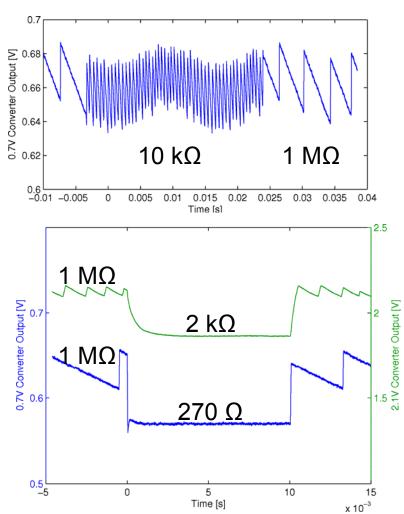
Ex. 2 - Ultra-low-power Conversion in PicoCube Wireless Sensor Node

PicoCube: A 1cm3 Sensor Node Powered by Harvested Energy, 2008 DAC/ISSCC Student Design Contest

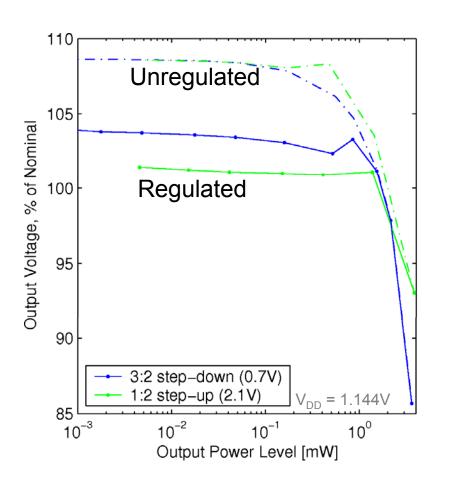

PicoCube Power Management Chip Block Diagram

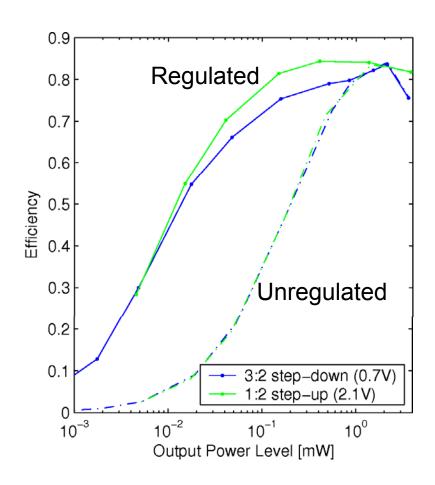
Seeman, Sanders, Rabaey, "An Ultra-Low-Power Power Management IC for Wireless Sensor Nodes," CICC 2007.

PicoCube Converter Topology

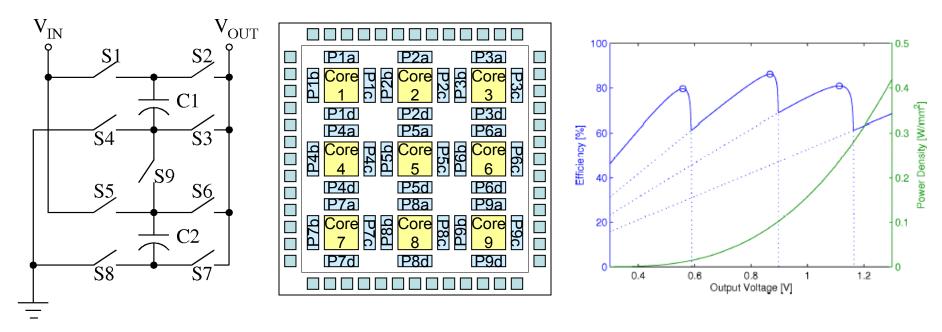

Microcontroller + sensors

Linear Regulators (LDOs) further regulate and reduce ripple on outputs

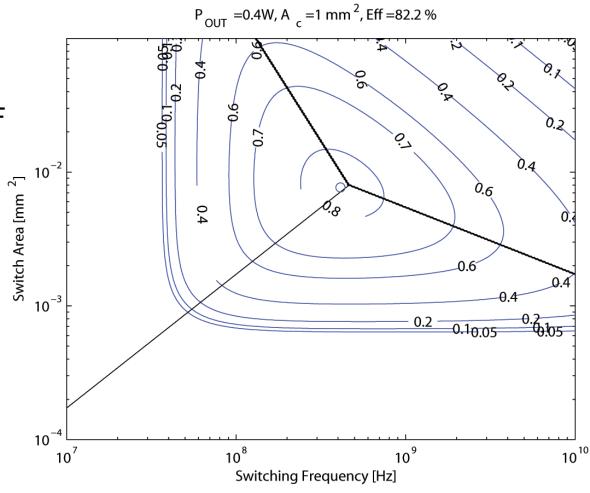

Hysteretic Feedback


- Regulates output voltage
 - On/off clocking control
 - Thermostat-type control
 - Improves efficiency by reducing f_{sw} for small loads

Converter leaves regulation for only large loads

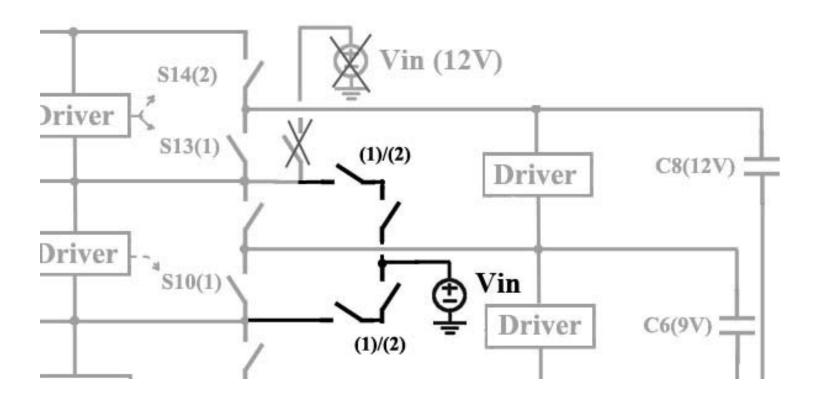

Converter Performance

Regulation is effective at controlling output voltage and increasing efficiency at low power levels!


Ex. 3: Microprocessor SC Converter

- A power density of 1 W/mm² is achievable in 65nm process.
- A tiled design improves output ripple and ESR performance
- Creates a scalable IP platform
- Ideal for microprocessor supplies:
 - Ultra-fast transient response
 - Package I/O at higher voltage/lower current
 - Independent core voltage control

Design Optimization Example: 0.4 W/sq.mm

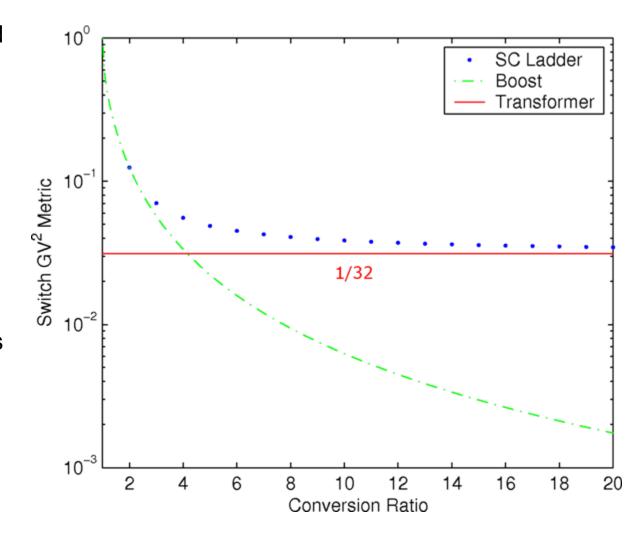

- Representative 0.13um tech
- 2.4-to-1.2V Conversion
- 1 sq mm M-I-M cap (2 nF
- Losses
 - SSL (main caps)
 - FSL (conduction)
 - Gate cap
 - Cap Bottom plate
 - Junction cap

Switched Cap Take-Aways

- Theoretical performance exceeds magnetic-based converters, and this is being realized in research
- Very simple low power operation reduce clk
- Integration convenient for v. low power app's to v. high current app's
- Moderate (high) voltage capability by stacking devices triple-well, SOI
- Regulation challenges nominal fixed ratio, but can operate with multiple Taps
- Further on-chip integration via aggressive clk scaling

 Tap Changing for Line Regulation – Feedforward

 Multi-mode Operation for Apps like Voltage Scaling


Conduction Loss Comparison

M. Seeman, S. Sanders, IEEE T-PELS, March 2008

•Performance compared with switch GV² metric:

$$rac{G_{OUT}V_{OUT}^2}{\sum G_i v_{r,i(rated)}^2}$$

- •Since converters are bidirectional, graph applies equally to step-down converters
- •Magnetic components modeled with *zero* conduction loss, and *no* switching loss impact

