
Supply Impedance and Voltage Conversion 
Requirements for CMOS Digital ICs

Elad Alon

Dept. of EECS and BWRC
UC Berkeley



Technology (µm)
0.10.20.30.40.50.6

10
-3

10-2

10
-1

10
0

Scaling and Supply Impedance
• CMOS scaling led to lower supply voltages and 

constant (or increasing) power consumption 

• This forces drastic drop in 
supply impedance
• Even at constant power:
• Vdd ↓, Idd ↑ |Zrequired| ↓↓

• Today’s chips:
• |Zrequired| ≈ 1 mΩ!
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Impedance Requirements of 
High-Performance Processors



Power Distribution and Regulation

• Significant resources spent to 
meet impedance requirement

• Initial motivation for integrated 
DC-DC:
• Relaxed package/PCB |Z|
• Active linear regulation can be 

used to reduce on-chip |Z| too

• But, so far these regulators increased total power
• Prevents adoption in today’s power-limited chips



Power-Neutral Regulation

• Gate delay depends on 
Vdd:
• So Vdd needs to be greater 

than some Vmin

• Supply variations force 
higher nominal voltage
• Causes extra power 

dissipation

• Goal: Build regulator without negatively impacting 
chip power  
• Regulator power needs to be less than recovered power
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Linear Regulators
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Improved Efficiency with Series 
Regulator?

• Clearly won’t meet efficiency goal:
• Regulator doesn’t really change noise on Vdd
• So still need same margin
• But added an extra Vdrop from variable resistor…
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Improved Efficiency with Shunt 
Regulator?

• Regulator can only pull current out of supply 
• To counter noise in both directions, need to burn 

significant static current
• Again, clearly inefficient

• Need to allow shunt to deliver energy to the load
• Not just dissipate it
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Push-Pull Shunt Regulator

• Use extra “shunt” supply to push current into Vreg
• Regulator capable of countering large variations
• But regulator loss set mostly by (significantly smaller) 

average variation

• Similar to Active Clamp* for board VRMs
• Build on previous work to improve on-die impedance
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*A.M. Wu and S.R. Sanders, “An Active Clamp Circuit for Voltage Regulation Module (VRM) 
Applications,” Transactions on Power Electronics. Sept. 2001.



Regulator Design Challenges

• Vshunt isn’t free
• Takes resources away 

from main supply
• Increases loss
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• Need to minimize quiescent output current
• Otherwise regulator too inefficient

• Need GHz bandwidth feedback path
• With minimum feedback circuit power



Allocating Resources for Shunt Supply

• Limited number of pins, metal lines for power
• Need to allocate resources between main and shunt supplies

• For resistive losses:

• If guarantee that Vshunt only handles transients
• Resistive losses of main supply not really affected
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Quiescent Output Current

• Similar issues in RF and audio power amplifiers
• In all cases, need to efficiently deliver energy based on a 

(small) input signal

• Build on PA knowledge to achieve high efficiency: 
• Non-linearly switch the output power devices
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• Went to push-pull to 

minimize regulator 
power overhead

• But many designs 
have significant Istatic



Switched-Output Regulator:
Comparator Feedback with Dead-Band

• Convert small signal on 
Vreg into full-swing to drive 
switch
• Use comparators in feedback 

path

• To avoid limit cycle:
• Offset thresholds to create 

dead-band
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Feedback Delay

• Can we exploit comparator’s properties to improve 
effective delay?

• For optimal response to 
noise at output, feedback 
bandwidth is critical

• For non-linear loop, this 
translates into low tdelay



Linear Loop with Derivative Control

• Addition of sτd to input cancels some of the 
phase shift from limited amplifier bandwidth

• But, implementing derivative behavior (without 
inductors) requires reduction of DC gain
• Limits usefulness in a linear loop
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Derivative Feedback with Comparators
• As long as comparators 

swing full-rail
• Only shape of TF in front 

of comparators matters
• “Gain” is restored by the 

comparators

• Net effect of derivative: 
reduces impact of tdelay

• Similar to sliding mode control
• But region of sliding behavior is small



Test-Chip Details
• 65nm SOI AMD test-chip

• Regulator uses same power 
distribution scheme as 
processor
• With reallocation for Vshunt

• On-chip noise generator 
and perf. monitor for 
testing Regulator
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E. Alon and M. Horowitz, “Integrated Regulation for Energy-Efficient Digital Circuits,” IEEE
Journal of Solid-State Circuit, Aug. 2008.



Measured Results

• Regulator reduces broadband noise by ~30%
• Total power dissipation actually reduced by up 

to ~1.4%
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Impedance with Faster Process

• Process was in 
development
• Low device ft

• Measurement 
matches simulation 
with slower devices 107 108 109 1010-50
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• Expect to reach ~50% noise and ~4% power 
reduction in production process with higher ft
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Need for Local Power Supplies

• Clear need for many, local supply voltages
• Per core supply, dynamic voltage supplies for SRAM, etc.

• But, can’t sacrifice supply impedance
• Makes external DC-DC conversion difficult (split planes)



Converter Impedance and Efficiency

• Supply noise very broadband…
• Significant noise content up to ~1GHz

• Operate integrated switching converter at ~2GHz?
• Inefficient and impractical…
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Proposed Power Delivery Architecture

• Split delivery of DC power from AC impedance
• DC-DC creates local supply
• Parallel regulator handles transients (maintains Vmin)

• Key question becomes conversion efficiency of 
integrated DC-DC
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Conclusions
• Supply impedance is a key consideration in 

chip power delivery

• Digital circuits care about Vmin
• Can leverage this to build power-neutral linear 

regulator
• Measured 30% noise reduction and actually 

improved power by ~1.4%

• Leverage efficient delivery of low impedance 
for integrated converters
• Low dynamic impedance and high efficiency hard 

to attain simultaneously


