Massachusetts Institute of Technology

Laboratory for Electromagnetic and Electronic Systems

Architectures, Topologies, and Design Methods for Miniaturized VHF Power Converters

David J. Perreault PwrSOC `08 Cork, Ireland Sept. 2008

Circa 2016

??

20 kW Kenotron Rectifier, Circa 1926 (From Principles of Rectifier Circuits, Prince and Vogdes, McGraw Hill 1927)

Server Power Supply, Circa 2006 (Manufactured by Synqor)

Motivation

- Passive energy storage components are the key to
 - Miniaturization
 - Integration
 - Performance (bandwidth, ...)
 - Energy storage requirements vary inversely with switching frequency: C, L proportional to *f*⁻¹
- But how does volume scale? (look at simple case only)
 Consider only ac conductor loss (e.g., as in a coreless design)
 Keep passive component impedances constant vs. f
- At constant η (constant Q): Volume proportional to f^{-3/2}
 At constant heat flux: Volume proportional to f^{-1/2} with Q improving as f^{1/3}

Switching Frequency Limitations

Loss mechanisms in conventional power electronics limit switching frequency

CICS Center for Integrated Circuits and Systems Massachusetts Institute of Technology

Switching Frequency Solutions

Minimize frequency dependent device loss, switch fast enough to eliminate or change magnetic materials

Coreless Magnetics or low-permeability RF materials

Microfabricated Coreless Inductors Joshua Phinney, MIT, 2004

Topology Implications

As frequency increases

- Driving high-side switches becomes impractical
- Controlling commutation among devices becomes challenging
- Topology *must* absorb parasitics
 - device capacitances, interconnect inductance, …

ZVS switching / resonant gating constrain control

- Duty ratio and frequency control limited
- Only efficient over a narrow load range

- Develop system architectures and control strategies that are compatible with VHF conversion
 - □ Fixed/narrow duty ratio, frequency range
 - Maintain efficient operation across wide load range
- Achieved through partitioning of energy conversion and control functions

Cell Modulation / On-Off / Burst-Mode Control

- Converter cell "bursts" on and off to regulate output
 - Efficient across wide load range (no loss when cell is off)
 - Cells can operate at narrow load / operating range
 - Fixed frequency and duty ratio
 - Resonant gating, switching at VHF
- Power stage components sized for VHF switching frequency (small passives)
- Input and output filters work at lower modulation frequencies
 - Up to a few % of switching freq.
 - But sizing based only on ripple, not transient requirements

- Efficient with ZVS switching, resonant gating at VHF
 - Switch control ports referenced to fixed potentials
 - Absorbs device and interconnect parasitics
- Compatible with On/Off control at fixed freq., duty ratio
 Avoid bulk magnetic storage in power stage
- Operates well over wide input, output voltage ranges
 - **Resonant inverter, rectifier characteristics often vary with voltage**
 - Design must accommodate this

Limitations of Traditional Class E Inverter

- High device stresses
 □ V_{ds,pk} ≈ 3.6 · V_{IN} for Class-E
- Tight link between output power, device capacitance, loss, and frequency

$$\begin{array}{l} \textbf{P}_{out} \propto \textbf{C}_{oss} \cdot \textbf{f} \cdot \textbf{V}_{DC}^2 \\ \textbf{\%P}_{cond} \propto \textbf{R}_{ds-on} \cdot \textbf{C}_{oss} \cdot \textbf{f} \end{array}$$

- A maximum frequency thus exists for a specified efficiency
 - R_{ds-on} · C_{oss} is an important device metric
- Uses a large "choke" inductor
 - Reduces performance under on/off control
- Inverter performance sensitive to load resistance

Impedance-Based Waveform Shaping

- By controlling the impedance seen at the transistor output, we can shape the voltage waveform
- A simple network can null the second harmonic and present a high impedance at the fundamental and the third harmonic

Impose odd-harmonic symmetry in voltage waveform

This network can be used in an inverter to "shape" the switch voltage to approximate a trapezoidal wave

Class E --> 02 Inverter

02 Inverter

- Replace dc choke with simple multi-resonant network
 - Network nulls the second harmonic and presents high impedance near the fundamental and the third harmonic
 - Shapes drain-source voltage to reduce peak voltage (25-40%)
 - Reduces sensitivity of ZVS switching to load resistance
- Eliminates bulk inductance
 - Small inductor size
 - Fast transient performance
- C_F is selected as part of the multi-resonant network design
 - Eliminates the tie between device capacitance and power that exists in the class E inverter

Example \$\$\$2 Inverter Design

- 30 MHz class Φ2 inverter
 - □ V_{in} = 160 200 V
 - **Ο** P_{out} > 320 W @ η_D~ 93%
- Breaks class E frequency limit
- Low device stress
 - $\Box V_{\rm ds,pk} < 2.3 V_{\rm in}$
- Small passive components
 - Fast transient response

Resonant Φ_2 **Boost Converter**

Vin

0

5

10

15

Time [ns]

20

25

30

35

- **Replace inverter load network with resonant rectifier** Rectifier tuned to replace load network at fundamental
- Low peak stress, ground-reference switch
- Fully resonant with small component size
- Ideally suited for constant frequency/duty ratio operation
- Low energy storage good candidate for on/off modulation control

Φ₂ Boost – Discrete Implementation

Φ₂ Boost converter based on a commercial LDMOSFET

- **Switching Frequency: 110 MHz**
- Input voltage range: 8V 18V
- Output voltage range: 22 34V
- Output power 23 W nominal
- 87% efficiency
- Small inductors, potential for integration or self-shielding design

Power Stage Component	Value
L _f	33 nH
L _{rec}	22 nH
L _{2f}	12.5 nH
C _{2f}	35 pF
C _{rec}	10 pF
LDMOS	FREESCALE
SWITCH	MRF6S9060
SCHOTTKY DIODE	FAIRCHILD S310

Closed Loop Efficiency Map

- Efficiency ranges from 82% to 87%+ over 5% to 90% load
- 2:1 input voltage range, 1.5:1 output voltage range
- Topology and control contribute to achievable range

VHF converter transient response excels when compared to equivalent hard-switched boost converter

Summary

- Higher frequency offers the potential for Minaturization, Integration, Bandwidth
 - Switching, gating, and magnetic losses limit the practical operating frequency of conventional designs
- Appropriate system design methods enable operation at VHF frequencies
 - Resonant gating and switching
 - Architecture and control
 - Separate energy conversion, regulation
 - Improved topologies
 - Improved devices and passive designs also have a big impact
 - Feasibility of this approach has been demonstrated
 - **Example converters at 30-110 MHz at 10's-100's of watts, volts**
- Work in this area is ongoing

Students

Anthony Sagneri, Yehui Han, Robert Pilawa, Jackie Hu, Olivia Leitermann, David Jackson, James Warren, Riad Wahby, Juan Rivas, Joshua Phinney,...

Sponsors

MIT Center for Integrated Circuits and Systems

National Semiconductor Corp.

Texas Instruments

MIT Consortium on Advanced Automotive Systems

Charles Stark Draper Laboratory

General Electric

DARPA

National Science Foundation

This general approach appears promising

Increasingly viable across a range of power levels and applications