

The World Leader in High Performance Signal Processing Solutions

5.1 Fully Integrated Isolated DC-to-DC Converter and Half Bridge Gate Driver with Integral Power Supply

1st International Workshop on Power Supply on Chip Cork, Ireland

Baoxing Chen Analog Devices, Inc. 804 Woburn St. Wilmington, MA 01887

Outline

- Integrated Signal and Power Isolation Needs
- Power Converter Architecture
- Transformer Structure
- Converter Performance
- Half Bridge Gate Driver Architecture
- Summary

Isolation Applications

PLC I/O and Communication

Power Supply

Instrumentation Data Acquisition and Communication

Motor Control Sensing and Gate Drive

Patient Monitoring To/From Patient

Integrated Isolated Power Transfer Needs

Signal Transmission Operational Diagram

DC-to-DC Converter Architecture

Primary Switching States: Resonant Gate Drive ZVS

V1 = VDD + V₁Cos(ωt). Region I: V₁ < V_t/2 both saturated.

Region II: $V_t/2 < V_1 < VDD - V_t$ one linear, and one saturated. Region III: VDD - $V_t < V_1$ one linear, and the other will be off. We want region III! Power delivered to load, not MN1/MN2!!!

Transformer-Coupled Resonator

High Q Resonance

$$\omega_{1,2}^{2}\Big|^{Transf} = \frac{-(L_{1}C_{1} + L_{2}C_{2}) \pm \sqrt{(L_{2}C_{2} + L_{1}C_{1})^{2} + 4C_{1}C_{2}(M^{2} - L_{1}L_{2})}}{2C_{1}C_{2}(M^{2} - L_{1}L_{2})}$$

$$\omega_1^2\Big|^{Transf} = \frac{1}{(L+M)C} \qquad \qquad \omega_2^2\Big|^{Transf} = \frac{1}{(L-M)C}$$

 $Z_{in}(\omega_1)\Big|^{Transf} \approx \frac{L+M}{2rC} \qquad Z_{in}(\omega_2)\Big|^{Transf} \approx \frac{L-M}{2rC}$

Low Q Resonance

Converter Stability

Power Transformer Radiation Minimized Through Antiphase Center Tap

PCB Radiation Dominant-PCB Techniques Available

Transformer Structures

Primary: Two Coils Connected in Center-Tapped

- L = 8 nH, R = 0.8 Ω, Cs = 0.38 pF, Q = 19 at 300 MHz
- Radius = 460 μ m, Turns = 3, Width = 60 μ m, Space = 7 μ m
- Secondary (1:1 for 5 V output): Two Coils Connected in Center-Tapped
- L = 8 nH, R = 0.8 Ω, Cs = 1.2 pF, Q = 13 at 300 MHz
- Radius = 460 μ m, Turns = 3, Width = 60 μ m, Space = 7 μ m

Converter Waveforms

Ch. 1 is the 450 kHz PWM signal.Ch. 2 is the input supply.Ch. 3 is the isolated supply output.

340 MHz Noise => 170 MHz Tank

Converter Performance: Saving Power Compared to Discrete Solution

Isolated Gate Drive Integration Needs

Size Reduction, Ease of Use, and Elimination of Duty-Cycle Limitation

Half-Bridge Gate Driver Architecture

500 mW DC-to-DC Converter and Half-Bridge Gate Driver in 16-Lead SOIC

4-Channel Isolation Integrated

Summary

 500 mW, 33% efficient integrated isolated DC-to-DC converter architecture was reviewed.

 The integrated signal and power integration provide possibilities for total isolated system integration; reduces total system cost and complexity.

Acknowledgement of contribution and assistance from ADI iCoupler group members

