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OverviewOverviewOverviewOverview

• Why micro-inductors on Silicon?

• Overview of micro-inductor technology

• Design approach and goals

• Results from fabricated devices

• Summary
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Size Reduction with frequencySize Reduction with frequencySize Reduction with frequencySize Reduction with frequency

Discrete components
Co-packaged IC + L

Discrete C

Stacked IC, L

Co-packaged C

2 mm C LICC

C LIC

IC L
C

C LIC L
IC

C

Frequency 4 MHz                            10 MHz            > 20 MHz         ?? MHz

Profile               < 1 mm                      < 1 mm        < 0.8 mm       < 0.6 mm    

Stacked IC, L, C

1 mm
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Why MicroWhy MicroWhy MicroWhy Micro----inductors on Silicon?inductors on Silicon?inductors on Silicon?inductors on Silicon?

• Stacked IC and Inductor requires:

– Inductor operation at high frequency (> 20 
MHz)

– Size & form factor compatibility between IC 
and inductor (< 4 mm2 )

– Low Inductor profile (< 0.3 mm)

– Packaging scheme

• Micro-fabricated inductor can satisfy these 

requirements
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Magnetics on Silicon: Tyndall ApproachMagnetics on Silicon: Tyndall ApproachMagnetics on Silicon: Tyndall ApproachMagnetics on Silicon: Tyndall Approach

• Single layer of racetrack shaped copper coils 

sandwiched between layers of magnetic material

• Copper coils deposited by electroplating

• Core consists of thin film of NiFe alloy deposited 

by electroplating

 

100 µm
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Overview of Fabrication ProcessOverview of Fabrication ProcessOverview of Fabrication ProcessOverview of Fabrication Process

Layer 1: Electroplated bottom core 

layer

Layer 2: Insulator layer between 

bottom core  and winding

Layer 3: Electroplated copper 

winding layer

Layer 4: Insulator layer between top 

core  and winding

Layer 5: Electroplating top 

core layer
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Winding TechnologyWinding TechnologyWinding TechnologyWinding Technology

 

tm/3Minimum spacing – linked to thickness

50 µmMaximum conductor thickness, tm

Electroplated copper 

50 um20 um
35 um10 um
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Magnetic Core MaterialMagnetic Core MaterialMagnetic Core MaterialMagnetic Core Material

Anisotropy induced in 

material during deposition Easy axis

Hard axis

800 A/mAnisotropy, Η
k

45 µΩ cmResistivity, ρ

80 A/mCoercivity, Hc

1.44 TSaturation, Bsat

Electroplated Ni45Fe55
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Permeability vs. frequencyPermeability vs. frequencyPermeability vs. frequencyPermeability vs. frequency
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Design ApproachDesign ApproachDesign ApproachDesign Approach
• Size and Efficiency are the key design parameters

• Define Inductor Efficiency as figure of merit

• Optimization based on analytical model for inductor

• Model Includes:

– Core loss: Eddy currents + Hysteresis

– Winding loss: DC + AC (6 harmonics)

• Goal of Optimization:

– Maximize efficiency in any given area

LossInductorPowerOutputConverter

PowerOutputConverter
Efficiency

+
=
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EfficiencyEfficiencyEfficiencyEfficiency----Area tradeArea tradeArea tradeArea trade----offoffoffoff

• Maximum Efficiency vs. Area, L =120 nH

• Vin = 3.6 V, Vout = 1.2 V, Iout = 500 mA, Iripple = 0.6 Iout , f=20 
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84

86

88

90

92

94

96

98

100

0 5 10 15 20
Area (mm2)

E
ff
ic
ie
n
c
y
 (
%
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

L
o
s
s
 (
W
)

Efficiency Hysteresis loss

Eddycurrent loss Winding loss



12

MicroMicroMicroMicro----inductor inductor inductor inductor OptimisationOptimisationOptimisationOptimisation
Optimisation for 200 nH inductor
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Two 140nH inductors

Fabricated DevicesFabricated DevicesFabricated DevicesFabricated Devices

2.5 mm2 7.5 mm2

Scale in mm

• Design Inductance range

– 0.5 mm2 → 10 – 40 nH

– 1.3 mm2 → 30 – 200 nH

– 2.5 mm2 → 30 – 200 nH

– 5.5 - 10 mm2 → 100 – 300nH

– Designed to maximize efficiency for:

– Vin = 3.6 V, Vout = 1.2

– f = 20 Mhz
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Typical L and R vs. fTypical L and R vs. fTypical L and R vs. fTypical L and R vs. f
• Inductance and resistance vs. frequency
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Inductance & DC resistanceInductance & DC resistanceInductance & DC resistanceInductance & DC resistance

• Measured inductance vs Rdc vs. area achieved to-date
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Efficiency in ConverterEfficiency in ConverterEfficiency in ConverterEfficiency in Converter

• 110 nH micro-inductor (5.5 mm2) compared to 110 nH wire-wound inductor 

in a 20 MHz dc-dc converter

• First generation 20 MHz converter designed by PERL group in University 

College Cork, Vin = 2.6 V, Vout = 1.2 V
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Efficiency in ConverterEfficiency in ConverterEfficiency in ConverterEfficiency in Converter
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• 160 nH micro-inductor (2.5 mm2) compared to 140 nH wire-wound 

inductor (Coilcraft 0402_AF141) in a 20 MHz dc-dc converter

• Second generation 20 MHz converter designed by PERL group in 

University College Cork, Vin = 3.0 V, Vout = 1.5 V
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Comparison of lossesComparison of lossesComparison of lossesComparison of losses

• Further reduction in DC resistance of micro-inductor required
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Beyond 20 MHz ?Beyond 20 MHz ?Beyond 20 MHz ?Beyond 20 MHz ?

3 turns, 1 lamination
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SummarySummarySummarySummary

• Extremely low profile inductor technology 

• Allows stacking of inductor and converter 

IC

• Inductor efficiency of approximately 93% 

achieved at 20 MHz

• Higher efficiency and smaller size possible 

at higher frequencies
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Thank you for your attention!Thank you for your attention!Thank you for your attention!Thank you for your attention!

Questions?Questions?Questions?Questions?
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