High Efficiency Micro-inductors on Silicon

Terence O'Donnell, Ningning Wang, Santosh Kulkarni, Ronan Meere, Fernando M. F. Rhen, Saibal Roy, Ray Foley, Jason Hannon, S.C. O'Mathuna

Tyndall National Institute¹, Dept. Elec. Eng., University College Cork², Cork, Ireland

Overview

- Why micro-inductors on Silicon?
- Overview of micro-inductor technology
- Design approach and goals
- Results from fabricated devices
- Summary

Size Reduction with frequency

Why Micro-inductors on Silicon?

- Stacked IC and Inductor requires:
 - Inductor operation at high frequency (> 20 MHz)
 - Size & form factor compatibility between IC and inductor (< 4 mm²)
 - Low Inductor profile (< 0.3 mm)
 - Packaging scheme
- Micro-fabricated inductor can satisfy these requirements

Magnetics on Silicon: Tyndall Approach

- Single layer of racetrack shaped copper coils sandwiched between layers of magnetic material
- Copper coils deposited by electroplating
- Core consists of thin film of NiFe alloy deposited by electroplating

Overview of Fabrication Process

Layer 1: Electroplated bottom core layer

Layer 2: Insulator layer between bottom core and winding

Layer 3: Electroplated copper winding layer

Layer 4: Insulator layer between top core and winding

Layer 5: Electroplating top core layer

Winding Technology

Electroplated copper		
Maximum conductor thickness, t _m	50 μm	
Minimum spacing – linked to thickness	t _m /3	

Magnetic Core Material

Electroplated Ni ₄₅ Fe ₅₅		2 1.5
Saturation, B _{sat}	1.44 T	$ \begin{array}{c c} 1 \\ 0.5 \\ \hline \hline \end{array} $
Coercivity, H _c	80 A/m	-0.5 -1
Resistivity , ρ	45 μ Ω cm	-1.5
Anisotropy, H _k	800 A/m	-3000 -2000 -1000 0 1000 2000 3000 H (A/m)

Anisotropy induced in material during deposition

Permeability vs. frequency

9

Design Approach

- Size and Efficiency are the key design parameters
- Define Inductor Efficiency as figure of merit

Efficiency = $\frac{Converter \ Output \ Power}{Converter \ Output \ Power + Inductor \ Loss}$

- Optimization based on analytical model for inductor
- Model Includes:
 - Core loss: Eddy currents + Hysteresis
 - Winding loss: DC + AC (6 harmonics)
- Goal of Optimization:
 - Maximize efficiency in any given area

Efficiency-Area trade-off

- Maximum Efficiency vs. Area, L =120 nH
- V_{in} = 3.6 V, V_{out} = 1.2 V, I_{out} = 500 mA, I_{ripple} = 0.6 I_{out}, f=20 MHz

Micro-inductor Optimisation

Optimisation for 200 nH inductor

Fabricated Devices

• Design Inductance range $-0.5 \text{ mm}^2 \rightarrow 10 - 40 \text{ nH}$ $-1.3 \text{ mm}^2 \rightarrow 30 - 200 \text{ nH}$ $-2.5 \text{ mm}^2 \rightarrow 30 - 200 \text{ nH}$ $-5.5 - 10 \text{ mm}^2 \rightarrow 100 - 300 \text{ nH}$

Designed to maximize efficiency for:
Vin = 3.6 V, Vout = 1.2
f = 20 Mhz

Two 140nH inductors

Typical L and R vs. f

Inductance and resistance vs. frequency

Inductance & DC resistance

• Measured inductance vs Rdc vs. area achieved to-date

Typical DC Bias Characterization

Inductance at 20 MHz vs DC bias current

16

Efficiency in Converter

110 nH micro-inductor & converter IC

- 110 nH micro-inductor (5.5 mm²) compared to 110 nH wire-wound inductor in a 20 MHz dc-dc converter
- First generation 20 MHz converter designed by PERL group in University College Cork, Vin = 2.6 V, Vout = 1.2 V

Efficiency in Converter

- 160 nH micro-inductor (2.5 mm²) compared to 140 nH wire-wound inductor (Coilcraft 0402_AF141) in a 20 MHz dc-dc converter
- Second generation 20 MHz converter designed by PERL group in University College Cork, Vin = 3.0 V, Vout = 1.5 V

Comparison of losses

Comparison of losses in micro-inductor to wire-wound inductor

Further reduction in DC resistance of micro-inductor required

Beyond 20 MHz ?

Efficiency vs. area vs. frequency for present technology

Summary

- Extremely low profile inductor technology
- Allows stacking of inductor and converter IC
- Inductor efficiency of approximately 93% achieved at 20 MHz
- Higher efficiency and smaller size possible at higher frequencies

Acknowledgements

This work has been funded by Enterprise Ireland under the Industry Led research Program ILRP/05/PEIG01

Thank you for your attention!

Questions?