Losses in laminated thin-film magnetic materials considering displacement current

Charles R. Sullivan and Di Yao
chrs@dartmouth.edu

Dartmouth Magnetics and Power Electronics Research Group

Magnetic materials are critical for integrated magnetics.

Thin-film materials compared to ferrites:
- Much higher saturation flux density (1~2 T).
- Can have much lower hysteresis loss.
- Much lower resistivity.

Eddy current is an important loss mechanism.

This is only one aspect of our work.

Introduction

Eddy-current loss in thin films

- High resistivity ρ helps (e.g. nanogranular Co-Zr-O)
- Bigger thickness t:
 - Higher power handling
 - Higher loss (as t^3)

$Laminations$

- Higher power handling according to T
- Loss OK (as $T \cdot t^2$)
Introduction

Simulation

Introduction

Higher-frequency simulation

- Displacement current through dielectric
- Loss approaches single-slab loss

Introduction

Questions:

- When can we ignore displacement current?
- How can we predict loss with displacement current?
- What layer thicknesses give best performance?
 - Need loss model.

Introduction

Modeling approaches

- Lumped-circuit models
 - Can estimate where the effect is important.
 - Accurate loss model?
- Analytical modeling
 - No closed-form solution
 - Accurate loss model?
- Numerical methods (e.g. finite-element)
 - Can accurately model losses
 - Hard to use in design optimization
Introduction

Our approach

- Curve-fit to finite-element results.
- Not "just a curve fit"
 - Match analytical results for limits:
 - Low displacement current (high-impedance dielectric layers)
 - High displacement current (low-impedance dielectric layers)
 - Simplify parameter space

Introduction

Collapsing the parameter space

Parameter space

- Eight parameters:
 - Frequency, \(f \)
 - Width, \(W \)
 - Number of layers, \(n \)
 - Thickness of magnetic layers, \(t \)
 - Thickness of dielectric layers, \(d \)
 - Relative permittivity of the dielectric, \(\varepsilon_r \)
 - Resistivity of the magnetic material, \(\rho \)
 - Relative permeability of the magnetic material, \(\mu_r \)

Outline

- Introduction
- Collapsing the parameter space
- Curve fit
- Experimental verification
- Conclusions

Hypothesis

In the range of interest, two parameters:
- Number of layers \(n \),
- Frequency ratio \(f / f_c = \hat{f} \) where \(f_c = \frac{TD}{\varepsilon_r \varepsilon_0 \rho W^2} \)

are adequate to determine a power ratio

\[
F_P = \frac{P_e}{P_T}
\]

i.e.,

\[
F_P = F_p \left(n, \frac{f}{f_c} \right) = F_p \left(n, \hat{f} \right)
\]
Testing the hypothesis

- COMSOL finite-element simulations.
- 2460 simulations with systematically varied parameter values.

Region of validity

We can describe the loss by

\[F_p = \frac{P_e}{P_T} = F_p \left(n, \frac{f}{f_c} \right) = F_p \left(n, \hat{f} \right) \]

with under 2% error when

- Most flux is in magnetic material \(\mu_r t / d \geq 100 \)
- Much wider than thickness \(W / (T + D) > 20 \)
- Thinner than half a skin depth \(T + D < \delta / 2 \)

Curve fit

Equivalent anisotropic material for infinite number of layers
Curve fit functions

- "Dual Slope"

\[F(f) = k \left(\frac{f}{f^a_b \cdot (f^a_b + f^a)} \right)^\beta \]

\[
\begin{align*}
F(f) & = k \left(\frac{f}{f^a_b} \right)^\beta & \text{for } f \ll f^\beta_b \\
& \approx k \left(\frac{f}{f^a_b} \right)^\beta & \text{for } f \gg f^\beta_b
\end{align*}
\]

Final curve fit

\[
F_p(\hat{f}, n) = \left(\frac{\hat{f}}{1 + \hat{f}^a_b} \right)^{1/a} \cdot \left(\frac{\hat{f}}{1 + \hat{f}^d_a} \right)^{1/d} + \frac{1}{n^2} \cdot \left(1 + \hat{f}^c_e \right)^{1/e}
\]

- Maximum error: 10%

Material tested: Co-Zr-O

- Nano-granular composite:
- Co particles in Zr-O matrix
- High resistivity compared to metallic films (~300 μΩ cm)

Tested thicknesses (not shown):
- $t = 100$ nm
- $d = 20$ nm
- Total 50 layers; 6 μm

Measurement Results

- Ryowa PMF-3000 permeameter
- New model
- Hysteresis loss?
- Layer shorts?
- 3D flux?
- 1000X
- No displacement current

Experimental verification
Design implications

- Smaller width helps:
- For same total thickness of insulation (D) and magnetic material (T), finer divisions are better:

Main result

- Simple formula accurately calculates loss in multilayer films including effect of displacement current.
- Can use in design and optimization of processes, devices, circuits and systems.

Not addressed (future work)

- Loss estimation for out-of-plane flux.