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Thin-film magnetic materials

Magnetic materials are critical for integrated 
magnetics.
Thin-film materials compared to ferrites:

Much higher saturation flux density (1~2 T).
Can have much lower hysteresis loss.
Much lower resistivity.

Eddy current is an important loss mechanism. 
This is only one aspect of our work.
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Eddy-current loss in thin films

High resistivity ρ helps 
(e.g. nanogranular Co-Zr-O)

Bigger thickness t :
Higher power handling

Higher loss (as t3)
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Laminations

Higher power handling according to T

Loss OK (as T·t2)
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Simulation
Introduction

power.thayer.dartmouth.edu 6

Higher-frequency simulation

Displacement current through dielectric
Loss approaches single-slab loss
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Questions:

When can we ignore displacement 
current?
How can we predict loss with 
displacement current?
What layer thicknesses give best 
performance?
Need loss model.
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Modeling approaches

Lumped-circuit models
Can estimate where the effect is important.
Accurate loss model?

Analytical modeling
No closed-form solution
Accurate loss model?

Numerical methods (e.g. finite-element)
Can accurately model losses
Hard to use in design optimization

Introduction
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Our approach

Curve-fit to finite-element results.
Not “just a curve fit”

Match analytical results for limits:
Low displacement current 
(high-impedance dielectric layers)
High displacement current
(low-impedance dielectric layers)

Simplify parameter space

Introduction
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Outline

Introduction
Collapsing the parameter space
Curve fit
Experimental verification
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Parameter space

Eight parameters:
Frequency, f
Width, W
Number of layers, n
Thickness of magnetic layers, t
Thickness of dielectric layers, d
Relative permittivity of the dielectric, εr

Resistivity of the magnetic material, ρ
Relative permeability of the magnetic material, µr

t
ρ, µr

d, εr

W

Collapsing the parameter space
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Hypothesis
In the range of interest, two parameters:

Number of layers n, 
Frequency ratio where 

are adequate to determine a power ratio

i.e, 

Collapsing the parameter space
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Testing the hypothesis
COMSOL finite-element simulations.
2460 simulations with systematically varied 
parameter values.

Collapsing the parameter space
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Testing the hypothesis
Collapsing the parameter space

4 sample
data sets 
shown, all 
four layers
Not all 
match this 
well, but
We can 
define a 
region in 
which they 
match 
within 2%
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Region of validity
Collapsing the parameter space

We can describe the loss by

with under 2% error when

Most flux is in magnetic material

Much wider than thickness
Thinner than half a skin depth

( )fnF
f
fnF

P
PF p

c
p

T

e
p

ˆ,, =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

<

power.thayer.dartmouth.edu 16

Curve fit

σxεy

Equivalent anisotropic material 
for infinite number of layers

Fp,inf

Fp,lam

Curve fit
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Curve fit functions

“Dual Slope”
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Final curve fit

Maximum error:  10%
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Material tested: Co-Zr-O
Co
O
Si

Tested thicknesses (not shown):
t = 100 nm           d =  20 nm  
Total 50 layers; 6 µm

t d

Nano-granular 
composite:
Co particles in 
Zr-O matrix
High resistivity 
compared to 
metallic films 
(~300 µΩ cm )

Experimental verification
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Experimental verification

hysteresis loss?
layer shorts?
3D flux?

New model
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Design implications

Smaller width helps:

For same total thickness of insulation (D) and 
magnetic material (T), finer divisions are 
better: 

Conclusions
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Main result

Simple formula accurately calculates 
loss in multilayer films including effect of 
displacement current.
Can use in design and optimization of 
processes, devices, circuits and 
systems.

Conclusions
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Not addressed (future work)

Loss estimation for out-of-plane flux.

Conclusions


