High Performance Integrated Power MOSFETs

P. Moens and M. Tack
ON Semiconductor, Belgium
High Performance Integrated MOSFETs

- **Integrate**
 - *High Voltage* (<100V) - *Power* (< 10A) functions
 - with *Intelligence* (µC, DSP, memory, logic)

- **High performance**
 - Sub-micron CMOS (feature size well below 0.5 µm)
 - Competitive Ron-Vbd-(Q\text{gd})

- **Driven by high growth markets:** Automotive, Communications and Industrial Applications

- Often operating in Harsh Environments:
 - High temperature: >150°C up to 200 °C
 - ESD (8kV HBM, SystemESD, ...), EMC, LU, ...

- Some requiring highest quality levels (“0 ppm”)
Typical Integrated Power SoC

<table>
<thead>
<tr>
<th>What?</th>
<th>Innovation by?</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV/power</td>
<td>device</td>
</tr>
<tr>
<td>Digital</td>
<td>Scaling</td>
</tr>
<tr>
<td>LV IOs</td>
<td>Scaling</td>
</tr>
<tr>
<td>HV analog</td>
<td>Isolation</td>
</tr>
<tr>
<td>LV analog</td>
<td>Scaling</td>
</tr>
</tbody>
</table>
Outline

• Integrated Power Technology Scaling
• Technology Options
• Power Drivers
 – R_{on}–V_{bd} trade-off
• Isolation Density
 – Lateral (component-to-component)
 – Vertical (component-to-substrate)
• Safe Operating Area
 – Electrical and Thermal Effects
• Conclusions
Technology Options

• HV CMOS (CMOS+)
 – (Deep) submicron CMOS process
 – Few extra process layers to cope with HV requirements
 – No buried layers, no power metal
 – Standard Junction Isolation

• Smart Power BCD
 – Submicron CMOS process
 – Substantial extra process cost
 – Buried layers for robustness against LU, ESD,
 – Power Metal to cope with high current capability (several Amps)
 – Trench Isolation (for higher voltage ranges)

• SOI
 – (Sub) micron CMOS process
 – Complete dielectric isolation, allowing HV (>150V)
Techno Options \(\rightarrow\) Application Features

![Diagram showing the relationship between Techno Features and Application Features. The diagram includes symbols for CMOS+, Integrated Power, and SOI, with various features like Cost, SOA/ESD, High Temp, Floating, Latchup, Power, Ron, and Isol dens plotted on the axes.](image)
Power Drivers – LDMOS

Floating RESURF LDMOS in n-epi
Power Drivers – Q-VDMOS

- VDMOS: V_{bd} not scalable, depends on technology
- JFET principle protects the gate \Rightarrow ROBUST
Power Drivers – Trench-Based MOS (1)

- A TB-MOS is a LDMOS integrated vertically in Silicon, benefit from the depth of the Si wafer!!

![Diagram showing trench-based MOS structure]
Power Drivers – Trench-Based MOS (2)

- Spacing between trenches (w) is a crucial device parameter
- V_{bd} depends on w (silicon fin thickness parameter)
 - $w < w_{crit}$: full depletion of drift region
 - $w > w_{crit}$: p-body/n-epi junction breaks first

![Diagram of Trench-Based MOS Device]

<table>
<thead>
<tr>
<th>w (µm)</th>
<th>V_{bd} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>1.2</td>
<td>90</td>
</tr>
<tr>
<td>1.4</td>
<td>80</td>
</tr>
<tr>
<td>1.6</td>
<td>70</td>
</tr>
<tr>
<td>1.8</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>2.2</td>
<td>40</td>
</tr>
</tbody>
</table>

V_{bd} of p-body/n-epi junction

V_K - Thin gate oxide
Power Drivers – Taskmaster (50-100V)

- Ron (Area) scaling driven by device innovation
 - VDMOS → rLDMOS → TBMOS
Electrical isolation

- Junction isolation
 - Simple and straightforward
 - Area increases with blocking voltage requirement (e.g. ~30 µm for 100V isolation)
- Deep trench isolation
 - Requires deep trench etching equipment
 - Area consumption independent of voltage requirement (e.g. ~6 µm for 100V isolation)
 - Allows for innovative solutions
Deep Trench Isolation (1)

- Increase trench isolation breakdown through voltage divider concept

Breakdown of isolation structure can be significantly increased
Deep Trench Isolation (2)
- Latch-up monitor: collected current/emitted current
- "SOI-alike" isolation

Substrate resistivity is prime parameter for latch-up improvement → reduces minority carrier lifetime
Safe Operating Area

• Total Safe Operating Area (SOA)
 - Electrical SOA: triggering of the parasitic npn transistor due to electrical effects. Short pulses (ns-μs). E.g. ESD, CDM. Destruction of the device.
 - Thermal SOA: triggering of the parasitic npn transistor due to thermal effects. Medium time pulses (μs-ms). E.g. Inductive switching. Destruction of the device.
 - Hot Carrier SOA: slowly shifting of the device parameter upon electrical gate/drain stress. Long term: seconds to year.
 - Interface/dielectric wear-out: TDDB, NBTI,
Safe Operating Area—Electrical Effects (1)

- Destruction of the power device by triggering of the parasitic NPN transistor by electrical effects
- Measured by 100 ns TLP pulses

- TB-MOS has 4X larger power density!
Safe Operating Area—Electrical Effects (2)

- What is the limit for $P_{\text{dens, sb}}$?
- Device will snapback when silicon becomes intrinsic.
- $T_{\text{snap-back}}$ is dependent on doping level, $\Delta T_{sb} \approx 500$ K
- Silicon parameters (k, D) are temperature dependent → need for self-consistency check.

$$P_{sb} \left(\frac{W}{cm^2} \right) = \frac{k \sqrt{\pi \Delta T_{sb}}}{\sqrt{4.D.t}}$$

TB-MOS approaches the limits of silicon
Safe Operating Area—Thermal Effects (1)

- Thermal Safe Operating Area yields information on time-to-fail under power pulsing (\(\mu s\)-ms)
- Determined by the properties of Silicon
- No difference between LDMOS and VDMOS
- TB-MOS slightly worse (trench oxide blocks heat)
- Mainly dependent on area of the driver i.e. cooling efficiency
Thermal SOA (Energy Capability)

- Upon thermal failure: device is melted in center (hottest spot). $V_{ds}=12V$

\[T_{crit} \sim 800K \text{ (thermal runaway)} \]
Thermal SOA (Energy Capability)

- Power Metal (Cu) effectively reduces T_{max} for single pulse, hence also improves Energy Capability.
Critical Temperature

- T_{crit} is dependent on V_{ds} (electro-thermal effects)
- Extraction needs to take into account temperature dependency of silicon properties (thermal conductivity)
- No difference between VDMOS and LDMOS (within exp. error). TB-MOS has slightly lower T_{crit}
Conclusions

• Trends and Challenges for innovation in integrated power technologies
 – Scaling of the technology node
 – Device Innovation
 – Electrical Isolation
 – Safe Operating Area

• Correct choice of devices depends on
 – Performance
 – SOA – robustness
 – Cost